Investigation of satellite precipitation product driven rainfall-runoff model using deep learning approaches in two different catchments of India
نویسندگان
چکیده
Abstract Rainfall–runoff models are valuable tools for flood forecasting, management of water resources, and drought warning. With the advancement in space technology, a plethora satellite precipitation products (SPPs) available publicly. However, application data data-driven rainfall–runoff model is emerging requires careful investigation. In this work, two rainfall sets, namely Global Precipitation Measurement-Integrated Multi-Satellite Retrieval Product V6 (GPM-IMERG) Climate Hazards Group Infrared with Station (CHIRPS), evaluated development prediction 1-day ahead streamflow. The accuracy from SPPs compared to India Meteorological Department (IMD)-gridded set. Detection metrics showed that light (1–10 mm), probability detection (POD) value ranges between 0.67 0.75 an increasing range, i.e., medium heavy (10–50 mm >50 POD values ranged 0.24 0.45. These results indicate performs satisfactorily reference IMD-gridded Using daily nearly decades (2000–2018) over river basins India's eastern part, artificial neural network, extreme learning machine (ELM), long short-time memory (LSTM) developed modelling. One-day runoff using modelling confirmed both sufficient drive reasonable estimated Nash–Sutcliffe Efficiency coefficient, correlation root-mean-squared error. particular, streamflow forecasts Vamsadhara basin (VRB) LSTM GPM-IMERG inputs resulted Nash-Sutcliffe Coefficient (NSC) 0.68 0.67, while ELM Mahanadhi (MRB) same input NSC 0.86 0.87, respectively, during training validation stages. At time, CHIRPS VRB 0.65, MRB 0.89 0.88, indicated could reliably be used prediction. This paper highlights deep models, such as LSTM, can lead new horizon provide forecasting flood-prone catchments.
منابع مشابه
Application of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)
Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...
متن کاملinvestigation of thermal comfort properties of woven sport fabric using blend of estabragh fibers
امروزه لباس در نظر ورزشکاران و کسانی که برای اوقات فراغت خود و یا برای رسیدن به اندامی متعادل، ورزش می کنند؛ بسیار با اهمیت است. احساس مطلوب از لباس در زمره خصوصیات راحتی پوشش می باشد. خصوصیات انتقال رطوبت لباس، در ارزیابی راحتی حسی و حرارتی منسوجات تولید شده از آن ها بسیار مهم است. هدف از این تحقیق، معرفی پارچه جدید است که متشکل از الیاف استبرق با خواص منحصر به فرد می باشد. استبرق لیف طبیعی تو...
cost benefits of rehabilitation after acute coronary syndrome in iran; using an epidemiological model
چکیده ندارد.
an investigation of accuracy and complexity across different proficiency levels in written narrative task
abstract this quasi-experimental study was aimed at examining the impact of storyline complexity on the grammatical accuracy and complexity of advanced and intermediate efl learners. a total of 65 advanced and intermediate efl learners were selected from iran language institute (ili). an intact group including 35 intermediate participants and another intact group with 30 advanced participants ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydroinformatics
سال: 2021
ISSN: ['1465-1734', '1464-7141']
DOI: https://doi.org/10.2166/hydro.2021.067